

Wetland Values and the Environment

THE WETLANDS INITIATIVE

The simple logic of environmental management:

- The state of our environment is a matter of land use
- Land use is a matter of economics
- Therefore, economics control the environment

What about our aquatic environment?

- Problems
 - □ Flood damage
 - Degraded water quality
 - □ Reduced wildlife
 - □ Limited biodiversity
- Solution
 - Wetlands

Pre-settlement: Wetlands

Settlement: Drainage

Today: Concrete and Steel

Why is it not more diverse, more functional, more to our liking?

Use Category	Unit Value		
	(\$/acre)		
Recreation	1,000		
Row-crop	3,000		
Suburban	25,000		
Urban	100,000		
Commercial	2 000 000		

And, what of these values?

Ecosystem Use	Unit Value (\$/acre)
Floodwater StorageNutrient Management	?
Nitrogen	?
Phosphorous	?
Carbon	?
Sediment Control	?
Wildlife habitat	?
Biodiversity	?

Wetland Losses: Mississippi River Basin

- Percentage of wetlands lost in the United States, 1780-1980
- Positively corresponds with the area of land drained in the Mississippi-Atchafalaya River Basin

Agricultural drainage: pros and cons

Drainage Benefits

Drainage Practice

Area Drained: Mississippi River Basin

Cumulative flood damage and control costs (1985 dollars)

Nitrogen benefits and use

 Effect of nitrogen application rate on corn yield

Annual Nitrogen
 Fertilizer Usage:
 Mississippi Atchafalaya River Basin

Nitrogen in the water

Nutrient farming could control nitrogen...

And, what about water quality? Hypoxia in the Gulf of Mexico is a good place to start.

Of the nitrogen loads reaching the Gulf of Mexico, the Illinois River contributes more than its fare share.

- □ The Illinois River contributes 3% of the flow but 12% (126,000 tons) of the total yearly NO₃-N load
- □ To reach pre-1970's NO₃-N loads to the Gulf of Mexico (350,000 tons/year) requires a load reduction of 700,000 tons/year in the Mississippi River and 100,000 tons/year in the Illinois River
- □ For the Illinois River, the solution requires 10 percent of drained wetlands to be restored, which would occupy 32 percent of FEMA floodplain

	Acres	% Watershed
Wetlands required	407,000	2.0
Wetlands drained	4,170,000	20.0
FEMA Floodplain	1,280,000	6.3

Summary

Wetlands provide:

- □ Flood control and sediment retention
- Self-sustaining nutrient management
- Wildlife habitat and recreational opportunities

FINANCING RESTORATION

Water Quality/Nutrient Trading

Nutrient Farming

Cost Comparison

Market Structure

WATER QUALITY/NUTRIENT TRADING

- between sources to meet regulatory objectives or water quality goals.
- Partnership between USDA and USEPA
- Incentives to farmers/ranchers who implement conservation practices that improve water quality

NUTRIENT FARMING

A strategy that:

utilizes created and restored wetlands to naturally remove nitrogen and phosphorous from surface waters and CO₂ from the air

is a business enterprise based on the sale of nutrient reduction credits

ANNUAL COST COMPARISON OF TREATMENT SYSTEMS

WERF economic analysis:

- Upgrades at 7 Chicago WRPs
- TN and TP removal based on future effluent limits

Wetland Nutrient Farms

- \$110,000,000 savings/year
- 189,000 acres of land required

WERF ECONOMIC COMPARISON

Effluent Limit	Wetland	Total Nitrogen		
(mg/L)	Size (acres)	Savings*	50% split of savings	Net Profit/acre
3.0 TN, 1.0 TP	189,000	74,000,000	37,000,000	196
2.18 TN, 0.5 TP	322,000	76,000,000	38,000,000	118

Effluent Limit (mg/L) Wetland Size (acres)	Total Phosphorous			
		Savings*	50% split of savings	Net Profit/acre
3.0 TN, 1.0 TP	189,000	59,400,000	29,700,000	157
2.18 TN, 0.5 TP	322,000	88,400,000	44,200,000	137

Total annual MWRDGC cost savings: \$66,700,000-\$82,200,000

Total annual Nutrient Farmer net profit: \$255-\$353/acre

^{*} includes sale of extra credits

KINSHIP MARKET ANALYSES

MARKET STRUCTURE:

- Removal of TN load from the Illinois River Watersheds
- Competitive market structure
- Linear programming model
 - Minimize cost for wetland TN removal
 - Optimize allocation of credits among watersheds

MARKET COMPONENTS:

- Demand
- Supply
- Marginal Cost/Total Cost

TN CREDIT DEMAND

TN CREDIT DEMAND

TN CREDIT SUPPLY: LAND

TN CREDIT SUPPLY: LOAD

TN CREDIT SUPPLY: LOAD

TN CREDIT COST

TN TRADE SCENARIO: NO RESTRICTION

TN TRADE SCENARIO: 10% ACCRUED

TN TRADE SCENARIO COMPARISON

Parameter	Unrestricted	Restricted Intra-watershed	Accrued 10% Penalty
Max. Land (acres)	298,770	298,770	365,110
Credit Price (\$/ton TN)	\$2,405	\$3,424	\$3,394
Annual Costs	\$63,260,000	\$66,190,000	\$83,290,000
Annual Profits	\$6,670,000	\$33,380,000	\$38,170,000
Rate of Return (%) (avg. watershed)	8%	48%	50%

Illinois River Nutrient Farm Pilot Project

Sue & Wes Dixon Waterfowl Refuge at Hennepin & Hopper Lakes (2,600 acres)

Sawmill Pocket (1,650 acres)

Goose Pond (1,230 acres)

THE WETLANDS INITIATIVE